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Abstract

In this paper we discuss the methodological issues of using a class
of neural networks called Mixture Density Networks (MDN) for discrim-
inant analysis. MDN models have the advantage of having a rigorous
probabilistic interpretation, and they have proven to be a viable altern-
ative as a classification procedure in discrete domains. We will address
both the classification and interpretive aspects of discriminant analysis,
and compare the approach to the traditional method of linear discrimin-
ants as implemented in standard statistical packages. We show that the
MDN approach adopted performs well in both aspects. Many of the ob-
servations made are not restricted to the particular case at hand, and are
applicable to most applications of discriminant analysis in educational
research.
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1 Introduction

Artificial neural networks (Haykin, 1994) can be viewed as a family of nonlin-
ear models used for empirical regression and classification modeling. Such net-
works have been successfully used in various fields for nonlinear modeling and
approximation, for example in speech recognition (Kohonen, 1995), expert sys-
tems (Gallant, 1993), and machine vision(Hinton and Sejnowski, 1983). More
recently they have also been applied for data analysis in various financial do-
mains (Baestaens et al., 1994). The increasing importance of neural networks
as nonlinear models is witnessed by the fact that currently many of the stand-
ard statistical software packages include feed-forward neural network modeling
in their tool box. Similarly the recent multidisciplinary research efforts in the
field of “Knowledge Discovery in Databases” (Fayyad et al., 1996) use quite
frequently neural network techniques.

Neural network models are composed of a large number of individual com-
putational elements called nodes, which are linked together to form a structure
(called the architecture). This structure typically classifies the neural network
type: feed-forward neural networks are layered structures, whereas recurrent
neural networks introduce feedback links down the network. The nodes are
associated with a nonlinear function y = f(z), and the links have associated
weights wW. The computation is organized by combining the weights with in-
puts, i.e., multiplying the input value z; by the corresponding value w;, which
is then given as argument for f. Thus the computation for a single node is
given by

Yy = f(Z W;T;).

Intuitively, the weights are the parameters of the model, and the learning of a
neural network from a data sample means parameter estimation. The descrip-
tion above is a gross simplification of this very rich set of models, but captures
the essential idea.

Giving an introduction to the various different types of neural networks and
their related learning algorithms (parameter estimation methods) is outside the
scope of this paper, and an interested reader should consult one of the excellent
text books available (Bishop, 1995; Haykin, 1994; Ripley, 1996), or many of
the introductions to neural networks from a statistical perspective (see e.g.,
(Cheng and Titterington, 1994; Ripley, 1993)). Two reviews of Hinton (Hinton,
1989; Hinton, 1992) are also valuable. We would like to point out that neural
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network model analysis can be based on various different viewpoints from
particle physics and statistical modeling to biological simulation, or automata
theory. QOur approach to neural networks is based on seeing them as probabilistic
models, which, as opposed to some other views, gives us a rigorous underlying
theoretical framework for their analysis and use. In this sense we conform to
the work presented in (Bishop, 1995; Mackay, 1992; MacKay, 1992a; MacKay,
1992b; Jordan and Jacobs, 1994).

In spite of their widespread use for data modeling in economics, physics,
computer science and pattern recognition, neural networks are almost unknown
in the educational sciences community. This is perhaps partly caused by the
unfamiliar terminology associated with neural networks due to their origin
from cognitive and neurosciences, partly by the lack of demonstrations of the
applicability of the methods for educational data. Since many neural network
models assume continuous input variables (outputs), educational data sets, such
as questionnaire data, have not been modeled due to their discrete nature. In
this paper we focus on the use of a particular class of neural networks called the
Mixture Density Networks (Bishop, 1994) in the analysis of educational data.
This intuitively very appealing neural network model family is introduced in
Section 2, and can be understood as an implementation of a particular subclass
of finite mixture models (Titterington et al., 1985).

Klecka (Klecka, 1981) defines discriminant analysis to be a set of statistical
techniques to study the differences between two or more groups of objects with
respect to several variables simultaneously. In educational research discrimin-
ant analysis is used for two different purposes:

e Interpretation of group differences—i.e., to find out if one is able to
discriminate between the groups on the basis of some set of characterist-
ics. In addition one might be interested in finding which characteristics
are the most powerful discriminators.

e Classification—i.e., predicting the group membership of new data for
which the group information is not known.

In Section 5 we will discuss the use of Mixture Density Networks for the
classification problem formulated in Section 3. Instead of just presenting clas-
sification accuracy information, we want to put the results in perspective, and
compare them to the ones achieved by the traditional linear discriminant ana-
lysis (McLachlan, 1992). We would like to point out that the purpose here is



not to demonstrate the superiority of the Mixture Density Network approach
in classification accuracy (although, due the power of the underlying mixture
model language, this in many cases is the case). Rather we would like to
discuss methodological issues for both constructing the classifiers and for eval-
uating their quality, if one moves from the linear discriminant framework to
neural network approaches. Many of the concerns raised are well-known in
the computational intelligence community (Bezdek, 1994), but seem to be very
seldom discussed in the educational quantitative methodology literature.

Finally we will address the interpretive side of the discriminant analysis.
Since any model that predicts well has captured an underlying regularity in the
data, an interesting question is whether that information can be extracted from
the model representation. Traditional neural networks suffer from the fact that
the language of weight matrix and node functions is not easily interpretable,
and results in a “black box” approach, which clearly is not useful in most
cases for educational data analysis. In Section 6 we will briefly illustrate that
this is not the case for Mixture Density Networks (due to their probabilistic
semantics), and discuss the interesting explorative possibilities offered by the
MDN models.

We aim at keeping the technical level of our discussion at as moderate level
as possible, and focus on discussing the methodological issues using a typical
example data sets, one of them being from a recent educational study. Readers
not interested in the technical details of the MDN network models can browse
Sections 2 and 3, and go directly to the description of the problem domains
(Section 4), from which the data samples for the experiments were taken.

2 Mixture Density Networks

Mixture Density Networks (Bishop, 1994) is a neural network class which can
be used to represent general conditional probability densities p({]J) by consid-
ering a (semi)parametric model for the distribution of £, whose parameters are
determined by the outputs of a feed-forward neural network, which takes d as
its input. Thus the MDN models are actually a combined neural network struc-
ture and a density model (for more details see the discussion in (Bishop, 1995)).
Provided we consider a sufficiently flexible network, and a sufficiently general
density model, we have a framework for approximating arbitrary conditional
distributions.



Typical choices for a parametric model are a single Gaussian or a linear
combination of fixed set of kernel functions. A very general framework for
modeling unconditional distributions can be based on the set of discrete finite
miztures ((Everitt and Hand, 1981), (Titterington et al., 1985)), where the joint
domain probability distribution is approximated as a weighted sum of mixture
distributions.

Let X,,...,X,, be a set of m (m > 1) discrete (random) variables, and
deDisa sample from the joint distribution of the variables X;,..., X,.
Then the finite mizture distribution for d can be written as (K > 1)

-
—

p(d) = p(Xi=21,...,Xn =2n)

K
= Z(p(Y:yk)p(Xl =.'L'1,---,Xm :zmlyzyk))) (1)
k=1

where Y denotes a latent clustering random variable, the values of which are
not given in the data D, and K is the number of possible values of Y.

Thus in finite mixture models the problem domain probability distribution
is approximated by a weighted sum of mixture distributions, where each mix-
ture component p(X, = z,,...,Xm = z,|Y = yx) models one data producing
mechanism. If the variables X, ..., X,, are independent, given the value of the
clustering variable Y, equation (1) becomes

K m

p(d) =3 (P(Y = i) [[ p(Xi = z]Y = yk)) : (2)
k=1 i=1

For the Mixture Density Networks considered here this independence assump-

tion holds and consequently computation uses equation (2).

A finite mixture model partitions the data to K clusters. This partitioning
can be modeled by introducing for each data vector JJ an unobserved latent
variable Z;, the value of which gives the the cluster index for the cluster vector cZ;
belongs to. We can now think a vector Z = (z1,..., 2n), consisting of the values
of the latent variables Z,,..., Zxy, as a random sample from the distribution
of Y like D is a random sample from the joint distribution of X;,..., X,,.
However, for technical reasons it is more convenient to consider each value z;
as a vector of cluster indicator variable values, z; = (zj1,..., 2K ), where

{1, if ci; is sampled from P(-|Y = yi),
ij =

0, otherwise.



Finite mixtures as defined in equation (2) is a generic model family, as we
still have to fix the cluster distribution p(Y) and the intra‘class conditional
distributions p(X;|Y = yx)'. Most commonly used component functions in the
literature are the univariate normal distributions (see e.g., (Titterington et al.,
1985)). In educational domains the variables are usually discrete, thus we can
drop the assumption of the form of the distribution. For the univariate case a
binomial model could be used, but for the general case with m > 1 a natural
choice is the multivariate generalization of the binomial distribution called the
multinomzial distribution

§(30) = ( G ) 167

i=1

where ¢ = (cy,...,¢s,;) is the vector of counts of the number of observations
of each value of X;. In addition the sum of probabilities 3°72, 8, = 1 and
Y 5L, ¢j = N’ (N' is the total number of observations). Since we are interested
in the data distribution, i.e., p(X;|Y = yx) the multinomial distribution form
simply reduces to a product of probabilities #;. Analogously we assume that
the cluster distribution p(Y') is multinomial. Thus in order to get a model,
we need to fix the number of the mixing distributions (K'), and determine the
values of the model parameters. For technical reasons it will be convenient to
make a notational distinction between the mixture weight parameters and the
parameters of the intra-class conditional distributions, i.e., ® = (o, ®),0 € Q,
where a = (ay,...,ax) and ® = (®11,...,P1m, ..., Pr1,. .., Prm), with the
denotations ay = P(Y = yi), ®xi = (@xi1, .-, Prin;), where ¢y = P(X; =
:E,'IIY = yk)-

Since our estimation of the network parameters will be Bayesian (Bernardo
and Smith, 1994) we need to fix the prior distributions for the parameters. The
family of Dirichlet (multivariate Beta) densities is conjugate to the family of
multinomials, therefore we assume that prior distributions of the parameters
are (ay,...,ax) ~ Di(p1,. .., pk) and (Pity - -, Gring) ~ Di(Okir, - - s Okin;),
(1<k<K,1<1i<m), where

{pg, o |1 <k< K;1<i<m;1 << n}

are called the hyper parameters of the corresponding distributions. Assuming

1Here we consider only mixtures in which all the component distributions come from the
same parametric class.



that the parameter vectors o and ®; are independent, the joint prior distribu-
tion of all the parameters can be expressed as

Ukzly . 70kin;)-

K
Di(p1,. -\ kK H

ut:]s

The finite mixture model family is universal in the sense that it can ap-
proximate any distribution arbitrarily close as long as a sufficient number of
components is used. Unfortunately such generality typically implies also that
parameter estimation can become computationally inefficient. Therefore the
networks used in our experiments will be a special subclass of the general Mix-
ture Density Networks. This class follows from equation (2) when we remove
the latency of Y and assume that one of the variables X,,..., X, gives us
the partitioning of the data (for notational simplicity we will assume that it is
always X,,). These new models correspond to a specific subclass of the more
general case, thus the joint probability distribution for a data vector d can be
written as

-

p(d) = p(X) =z1,...,Xm = T, Xm = k)

= 5 (Pt =) TT ptx: =X = ). o)

J=1

3 Classification problem

Let us now return to the classification problem. The purpose of a classification
procedure is to predict the value of a single class variable of a new partially
observed data vector, based on the model (e.g., discriminant functions) con-
structed from the sample.

Given the data sample D, MDN predictions are based on the conditional
distribution p(d|D) of a new test vector d, where

= p(d,D)

The classification problem can now be restated: Given the values of the vari-
ables X;,...,Xmn_1, and a data sample D, predict the value of variable X,,.
For notational simplicity, in the sequel we drop the variable names, and de-
note a value assignment (X, = z;,Xy = Zg,...,Xm-1 = Tm-1) by writing

(4)
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(z1,Z2,...,Zm—1). Now for each possible value zmi, Tmi € {Tm1,- .-, Tmn,, } We
wish to compute the probabilities

p(Xm = mmi'(mla - amm—l)a D)
From the Bayes’ theorem (Bernardo and Smith, 1994) we know that
P Xm =Zmi | (z1,-.-,Zm-1), D)

pdzmil D)
Yrz pld[zmi]| D) ,

(3)

where a?[:rmi] denotes the vector (X; = z1,...,Xmo1 = Tm-1,Xm = Tmi)-
Consequently, the conditional distribution for variable X, can be computed
by using the complete data vector conditional distributions (4) for each of
the possible complete vectors ci[mmi]. The resulting distribution is called the
predictive distribution of X,,.

The derivation of different possibilities as the predictive distribution p(-) in
the case of MDN is somewhat involved and omitted here. The derivations can
be found e.g., in (Heckerman et al., 1995; Kontkanen et al., 1997; Tirri et al.,
1996). For the present purposes it is enough to state that for the restricted case
of finite mixtures discussed in the previous section, the calculation of the pre-
dictive distribution can be performed efficiently without any approximations.

4 Data description

For our experiments we used three data sets, one from medical domain (Primary
Tumor), one from chemical analysis (Glass) and an educational data set from
a recent study (Effectiveness). The Primary Tumor data sets concerns pre-
dicting the location of primary tumor, where the location of the cancer is the
group variable. Glass Identification database (USA Forensic Science Service)
is concerned of grouping glass defined by their oxide content (i.e. Na, Fe, K,
etc). Both of these data sets are standard benchmarks for comparing different
classification procedures. Since the educational data used is particular to the
study at hand, we will give a more detailed description of it.

The educational data used in this study was gathered for the research pro-
ject “Effectiveness of Teacher Education in Finland” in the spring 1996. The
objective of the project was to evaluate the effectiveness of Finnish teacher
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Data set Size #Variables #Classes (Groups)

Glass 214 10 6
Primary tumor 339 18 21
Effectiveness 204 42 4

Table 1: The description of the data sets used in our experiments.

education at various levels from individual to international teacher education
policy. A more detailed description of the framework and research conducted
in the project is discussed in (Niemi and Tirri, 1996). The data adopted to this
study was gathered to investigate how well teacher education had been able to
achieve the goals set to it. These goals were selected from school-law, pro-
grams of teacher education and other documents describing teachers’ work at
school. The teachers and their educators from four different teacher education
departments in Finland were asked to perform self-evaluation on the success
of teacher education for helping teachers to achieve these goals. The evalu-
ation instrument consisted of 41 behavior statements (and information about
the teacher education department), and used a Likert scale from 1 to 5 for the
assertions. The results of this evaluation study are reported in the forthcoming
study (Niemi and Tirri, 1997).

The data sample used for our comparison is derived from the teachers’
data in the study described above. This data consists of ratings of 204 Finnish
teachers. The subjects were teaching at two levels, one half being element-
ary school class teachers (N=110) and the other half secondary school subject
teachers (N=94). These teachers came from four different teacher education
departments in three different counties of Finland. The gender distribution was
representative to that of Finnish teacher population—25% were males.

A short description of the data sets used can be found in Table 1.2

2The Primary Tumor and Glass data sets can be obtained from the UCI data repository
at URL address “http://www.ics.uci.edu/~mlearn/”.
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5 MDN in classification

Let us now first study the problem of developing a classification procedure,
which would allow us predict the group to which a given data vector most
likely belongs. For example for the Effectiveness data set this means develop-
ing a model, which would allow us to predict from which of the four different
teacher education departments a teacher comes from based on his/her answers
to the questions. In the application domain this information is interesting for
finding the topics that could be improved in each of the teacher education de-
partments. Here we will allow the classification procedures to use all the 41
predictor variables in constructing the predictive model, which is atypical to
a questionnaire data analysis. In practice for this type of problems discrim-
inant analysis is preceded by dimensionality reduction procedures, e.g., factor
analysis, and one would use summarized information such as the factor scores
instead of the primary variables. Knowing the difficult issues related to select-
ing a proper factor structure, this would, however, introduce another parameter
to our study, i.e., the discriminative quality of the factor variables constructed.
Although the analysis is performed at the primary variable level, all discussion
is naturally valid for discriminant analysis with factor scores also.

5.1 Testing with sample vs. cross validation

The traditional classification procedures in linear discriminant analysis typic-
ally use either the discriminating variables or the canonical discriminant func-
tions constructed from the data (Klecka, 1981). We assume that the reader
is familiar with the standard approach as implemented in the SPSS statistical
software package (Norusis, 1990), and do not repeat the principles here.
What we are more interested in is the validation of the classification pro-
cedure constructed, either by the Linear Discriminant (LD) or by the Mixture
Density network approach. For MDN we have described the classification pro-
cedure as the calculation of the predictive distribution p(d[zm:]|D), which in
our case depends on parameters ©. The corresponding notion to our model
O in the linear discriminant analysis are the canonical discriminant functions
(let us denote them by fiq). A typical procedure to test the accuracy of fiq
is to classify the cases in the sample from which the model was constructed.
We will call this approach training sample validation. The resulting percentage
of correct predictions together with analysis of the difference to the expected

10
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number of correct predictions is then used to quantify the quality of the model.

Although many textbooks include a warning about the fact that testing a
model with the same data sample from which it is constructed (see e.g., (Klecka,
1981), pp. 51-52) gives inflated estimates of the classification performance, this
seems to be the standard practice, unless the size of the data sample is large
and sometimes independent samples are used. In particular, use of k-fold cross
validation (Stone, 1974), sometimes known as the “jackknife”, tends to be very
rare. This is quite concerning, as it is well known that most parameter learn-
ing procedures have a tendency to overfit, i.e., form classification functions that
are more accurate for the sample than they would be for the full population.
In particular we will demonstrate that the classification accuracy of both LD
and MDN is substantially different for the training sample, than if measured
by cross validation. The more parameters the model used in the discrimin-
ant analysis has, the more severe this overfitting phenomenon is. With the
exception of the simple model class of perceptrons (Haykin, 1994), all neural
network model families are highly parameterized nonlinear function estimat-
ors, and would perform extremely poorly, if the models were selected based on
their training sample performance. Therefore in the computational intelligence
community the training sample based validation has been totally replaced by
other methods such as cross validation based estimation.

An interesting question is, why has this not happened in the educational
research community? The answer is intuitively simple, but has important con-
sequences for the common practices, if neural networks models (or actually
any highly parameterized or nonparametric model class) are to be used. The
number of parameters for the hyperplanes used in f;d for low-dimensional data
spaces is so low that the model is not able to overfit much, and thus automatic-
ally shows some generalization to the full population. This can be clearly seen
from Table 5.1, where the discriminant function model ffd with the variable
selection (5 variables) is only able to fit the model to the training sample to
reach 51% accuracy with 45.5% performance in leave-one-out cross validation.
Notice that in the 41 variable case we see the difference of 22% for LD between
the classification in the training sample and cross validation. Naturally MDN
shows the same behavior, although for the more general (semiparametric) MDN
the results would be even more illustrative; for this particular data set we could
reach over 90% accuracy with the training sample with very poor generalizab-
ility when tested with out of sample data.

In Table 5.1 we report the classification accuracy of both the LD and MDN

11
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| DATA SET | METHOD | LD (SPSS) | MDN |

Effectiveness nvs and mdo
training sample 72.0 74.5
5-fold crossvalidation 46.0 43.0
leave-one-out crossvalidation 50.0 38.5
vs and mdo
training sample 49.5 58.0
5-fold crossvalidation 45.0 44.5
leave-one-out crossvalidation 44.0 45.0
nvs and mdi
training sample 69.0 75.0
5-fold crossvalidation 44.5 39.5
leave-one-out crossvalidation 48.5 39.5
vs and mdi
training sample 51.0 57.0
5-fold crossvalidation 44.0 45.5
leave-one-out crossvalidation 45.5 45.0
Primary Tumor | nvs and mdi
training sample 48.0 56.9
leave-one-out crossvalidation 36.0 49.0
Glass nvs and mdi
training sample 64.5 79.0
leave-one-out crossvalidation 60.3 70.1

Table 2: The comparison of the classification performance of the linear dis-
criminant functions and Mixture Density Networks. The option “nvs” and
“vs” denote that no variable selection/variable selection was used, i.e., 41 pre-
dictor variables/5 predictor variables were used. Options “mdo” and “mdi”
correspond to omitting data with missing values and including missing value
as a value in the analysis, respectively. The numbers represent the percentage
of correctly classified cases.
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methods in the case of the data sets described in Section 4. For comparative
purposes, in the Effectiveness case, we have also included the results for a re-
duced variable set, the selection of the variables was performed by the standard
stepwise selection procedure. In addition it is interesting to observe that as
opposed to LD, MDN performance improves when the number of variables is
decreased. This is due to the fact that instead of pure discrimination, MDN in
fact tries to model the full joint distribution of the variables and thus has to
balance the predictions for all the variables, not just the group variable.

From the above discussion we would like to stress that reporting the classi-
fication performance in the training sample is in most cases quite misleading,
and definitely not to be used with more complex model families such as neural
networks.

5.2 Classification performance vs. training sample size

In the previous Section we saw that for the Effectiveness data set LD out-
performs the MDN in the cross validated error rate when all the 41 predictor
variables are used, and for that for the 5 predictor variable case both methods
showed equal performance. On the other hand for the Primary Tumor and
Glass data sets MDN clearly outperforms the standard LD. Let us now study
what happens to the performance of these two methods as a function of training
sample size.

In this type of experiments one randomly partitions sample in a training
sample reservoir D, containing 70% of the sample, and a test set D, containing
the remaining 30 %. One data dy is then randomly taken out of the training
reservoir and used as a training sample D, = {dl} This initial training sample
D, is used to construct the model which is used to classify all d € D,, and the
predictions thus obtained for each d are then compared to the actual outcomes
k.

Next the training set D, is extended by another data instantiation J:z, un-
equal to the element already in D, but otherwise randomly picked from the
training reservoir D,. This new training set is denoted by D,. After building
the new model, all d € D, are classified again, and the results are compared
tot he actual outcomes. ThlS procedure of adding one training element to D;
to form D;;, determining the model using D;;; and predicting the value of the
group variable for each entry in the test set is then repeated until D;, = D,,
i.e., contain the full reservoir. This whole procedure is then repeated 10 times

13
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Figure 1: The classification performance of MDN and LD as a function of the
sample size for the Effectiveness data set.

with another split for the training sample. Figure 1 gives the average (over 10
repetitions) performance of Mixture Density Networks and the linear discrim-
inant methods as a function of the training sample size. Here we can see that
both of the methods show quite similar small sample performance, the shapes
of the curves being almost identical. However, this type of the analysis tells
us about the complexity of modeling the data set with the model classes given.
We can see that both methods are asymptotically approaching success rate of
40-50%, which is not particularly high.

6 MDN in exploratory analysis

In standard discriminant analysis, once the canonical discriminant functions
have been derived, one can try to interpret their meaning. This is typically done
by examining the relative positions of the data cases and group centroids, and
by studying the relationships between the individual variables and the functions.

14
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Figure 2: A snapshot of the interface of the NONE software tool.

One of the methods is to study the structure coefficients of the variables to see
how much a variable X; has in common with a discriminant function fiq. In
our MDN approach the corresponding notion would be the Kullback-Leibler
distance of the unconditional and conditional marginal likelihood of Xj, i.e.,

DKL(p(Xi|Xm = ka @), P(X,le)), where

where Dk (p, q) is the relative entropy between p and ¢ (Cover and Thomas,
1991). Similarly the corresponding notion to Wilk’s lambda is the relative
entropy between the unconditional and conditional joint distributions, i.e.,

Dicw(p(X | Xm = k,0),p(X|0)).

MDN networks model the joint probability distribution of the variables
X1,...,Xm. Once we have built our model ©, we can in fact explore the
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predictive (marginal) distribution of any variable X; given the values of other
variables, not just the group variable X,,. Modeling the full joint distribution
gives us an extremely powerful exploratory tool— here we only want to briefly
address some of the questions that can be answered by such a tool:

e Variable predictive distributions for a given group. In the extreme
case we can fix in the data vector only the value of the group variable
Xm, after which the MDN can calculate all the marginal predictive distri-
butions. This means that one can study the distribution of any variable
conditioned by the fact that the data vector d belongs to the group. For
example in our Effectiveness data set we can fix one teacher education de-
partment value, and then explore what is the predicted attitude towards
readiness for multimedia teaching for teachers that graduated from that
particular department.

e Variable predictive distribution of the group variable given some
combination of other variable values. We can reverse the situation
in the previous item, and explore the effect of some value combination of
variables X;, X, ... for predicting the group. Again, to give an example,
we could explore which of the teacher education departments seems to
have given the least readiness to teachers for using computers and multi-
media in their teaching.

e Variable predictive distribution of a non-group variable given
some combination of other variable values. Similarly, based on the
implicit clustering induced by the group variable, one could also explore
the predictive distribution of any non-group variable X; given the values
of some other non-group variables X, Xk, etc., without fixing the group
value.

The MDN based approach has been implemented and runs on a Pentium
PC under Linux operating system. Figure 2 illustrates the experimental soft-
ware tool called NONE, which provides a flexible graphical interface for build-
ing MDN models, and exploring the predictive distributions. NONE is pro-
grammed in Java, and thus can be used with any Java compatible Internet
browser. A running Java™ demo of the software can be accessed through our

WWW homepage at URL “http: //www.cs.Helsinki.FI/research/cosco/”.
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7 Conclusion

In this paper we have discussed some of the methodological issues of using a
class of neural networks, called Mixture Density Networks, for discriminant
analysis. We demonstrated that, as opposed to many other neural network
models, Mixture Density Networks have the advantage of having a rigorous
probabilistic interpretation, and thus the resulting models can also be used for
explorative purposes. In addition MDN have proven to be a viable alternative
as a classification procedure in discrete domains, which is supported by the
results in the empirical part of our work. The use of full joint probability
models in discriminant analysis raises interesting methodological questions,
some of which were addressed in our discussion. This paper has discussed
ongoing research, and more extensive theoretical and experimental treatment
e.g., in the context of factor analysis is a topic for future work.
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